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Abstract—Topological Deep Learning (TDL) has emerged as a paradigm
to process and learn from signals defined on higher-order combinatorial
topological spaces, such as simplicial or cell complexes. Although many
complex systems have an asymmetric relational structure, most TDL
models forcibly symmetrize these relationships. In this paper, we first
introduce a novel notion of higher-order directionality and we then design
Directed Simplicial Neural Networks (Dir-SNNs) based on it. Dir-SNNs
are message-passing networks operating on directed simplicial complexes
able to leverage directed and possibly asymmetric interactions among
the simplices. To our knowledge, this is the first TDL model using a
notion of higher-order directionality. We theoretically and empirically
prove that Dir-SNNs are more expressive than their directed graph
counterpart in distinguishing isomorphic directed graphs. Experiments
on a synthetic source localization task demonstrate that Dir-SNNs
outperform undirected SNNs when the underlying complex is directed,
and perform comparably when the underlying complex is undirected.
Index Terms—Topological Deep Learning, Directed Simplicial Complexes,
Directed Simplicial Neural Networks

I. INTRODUCTION
A strong inductive bias for deep learning models is processing
signals while respecting the relational structure of their underlying
space. Topological Deep Learning (TDL) is an emerging paradigm to
process and learn from signals defined on combinatorial topological
spaces (CTS) like simplicial and cell complexes [1], [2]. Unlike
traditional graphs and Graph Neural Networks (GNNs), which can
capture only pairwise relationships, i.e., two nodes connected by
an edge, combinatorial topological spaces and Topological Neural
Networks (TNNs) can capture higher-order interactions [3]. Such
higher-order interactions are essential in many interconnected sys-
tems, including biological networks, where multi-way links exist
among genes, proteins, or metabolites [4]. In this work, we are
interested in Simplicial Complexes, powerful CTS allowing for more
sophisticated adjacency schemes among simplices (nodes or groups
of nodes closed under inclusion) than graphs, thus leading to a richer
topological characterization and inductive bias.
Related Works. Topological Neural Networks have been shown to
be expressive [5] (using the WL criterion [6]), able to handle long-
range interactions [7], and effective in heterophilic settings [8], [9].
Simplicial convolutional neural networks have been proposed in [10],
[11]. Message-passing simplicial networks have been introduced in
[5] along with a simplicial generalization of the WL test. Recurrent
message-passing simplicial networks were explored in [12]. E(n)
equivariant message-passing simplicial networks have been intro-
duced in [13]. Message-passing free simplicial neural networks have
been proposed in [14], [15]. Finally, simplicial attention networks
have been proposed in [16]–[19].
Current Gaps. Accounting for edge directionality transformed our
understanding of networks modeled as graphs and led to better learn-
ing performance [20]–[23]. We anticipate that the emerging research
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on directionality in higher-order networks modeled as CTS [24], [25]
will have a similar transformative impact. However, extending the
TDL machinery to account for higher-order directionality remains
unexplored and challenging. The main reason for this is that the very
concept of higher-order directionality is not yet well defined in the
Topological Deep Learning literature.
Contribution. Here, we fill this gap with a three-fold contribution.

C1. We motivate and introduce a novel notion of higher-
order topological directionality, i.e., novel directed adjacencies
among the simplices of a directed simplicial complex, hinging on
the theory of directed simplicial paths [24]. Directed simplicial
paths generalize directed paths among nodes to directed paths
among higher-order simplices.

C2. We introduce the first directed Topological Neural Networks:
Directed Simplicial Neural Networks (Dir-SNNs), message-
passing networks operating on directed simplicial complexes
and leveraging the above directed adjacencies.

C3. We theoretically and empirically prove that directed simplicial
neural networks can distinguish isomorphic directed graphs
better than directed graph neural networks.

We numerically illustrate the potential of Dir-SNNs on a source
localization task at the edge level, confirming that both directionality
and the directed topological inductive bias play a role when compared
with undirected SNNs and directed GNNs, respectively.

II. BACKGROUND

In this section, we define our domain of interest, directed simplicial
complexes, our main tool to define higher-order directionality, face
maps, and the signals we are interested into, topological signals.
Directed Simplicial Complexes. An (abstract) undirected simplicial
complex is a pair K̃ = (V,Σ), where V is a finite set of vertices, and
Σ is a collection of subsets of vertices such that for every element
σ ∈ Σ, if τ ⊆ σ, then τ ∈ Σ (inclusivity property) [3]. An element
σ of Σ is called a simplex of K̃. A directed simplicial complex K
is a pair K = (V,Σ), where this time Σ is a collection of non-
empty ordered tuples of vertices, i.e., the directed simplices. Again, Σ
satisfies the inclusivity property, i.e., if a simplex σ is in Σ, then any
non-empty ordered subtuple τ of σ is in Σ. The dimension dim(σ) of
a directed simplex σ = (v0, . . . , vk) is given by its arity minus one,
i.e., dim(σ) = k when |σ| = k+1. If dim(σ) = k, σ is called a k-
simplex. The dimension dim(K) of a directed simplicial complex K
is the maximal dimension of a directed simplex in K. The k-skeleton
Kk of K is the collection of directed simplices of dimension up to
k. A directed graph is an example of a directed simplicial complex
of dimension one, in which nodes and directed edges are directed
0- and 1-simplices, respectively. A directed simplicial complex of
dimension two also comprises directed triangles.
Directed Flag Complexes. It is often useful to address (directed)
graph-based problems by enriching the graph with higher-order
relations, thereby mapping it to a higher-order simplicial complex
while preserving its structure – nodes (0-simplices) and edges (1-
simplices) remain those of the underlying graph. When such a



Fig. 1: From left to right: an undirected graph, its corresponding two-
dimensional flag complex (nodes, edges, and triangles), a directed
graph, and its corresponding directed flag complex (nodes, directed
edges, and directed triangles). In the undirected flag complex, the
triangles are σ = {0, 1, 2} and τ = {0, 2, 3}. In the directed flag
complex, only the triangle σ = (0, 1, 2) forms a directed triangle, as
(0, 2, 3) lacks the required edge (0, 3).

structure-preserving transformation maps distinguishable graphs to
distinguishable simplicial complexes (formally, it preserves isomor-
phisms) and is injective, meaning it maps indistinguishable graphs
to indistinguishable simplicial complexes, it is called a graph lifting
[5], [26]. A prominent example is the flag complex lifting, which
maps an undirected graph G to a flag complex K̃G [27]. A flag
complex is a simplicial complex where the k-simplices correspond to
the (k+ 1)-cliques in G – subsets of k+ 1 vertices where each pair
of distinct vertices is connected by an edge. Directed flag complex
liftings extend this transformation to accommodate directed graphs
(digraphs). In this case, a directed flag complex KG is a directed
simplicial complex where the k-simplices are ordered (k+1)-cliques
in G. In this context, an ordered k-clique is a totally ordered tuple
(v1, . . . , vk) such that (vi, vj) is a directed edge for i < j. A simple
example showing a graph, its flag complex, a directed graph, and its
directed flag complex is presented in Fig. 1.
Face Maps. In a directed simplicial complex K, if τ ⊆ σ and σ ∈ K,
then τ is said to be a face of σ. Specifically, if dim(τ) = dim(σ)−1,
τ is called a facet of σ. A directed k-simplex has k+1 facets. Face
maps are a formal tool used to identify the faces of a simplex by
systematically removing one of its vertices. Let K = (V,Σ) be a
directed simplicial complex of dimension K. The face map di maps
a k-simplex σ to the (k−1)-simplex τi obtained by omitting the i-th
vertex from σ, thus it is a mapping di : Σ → Σ defined as:

di(σ) = τi =

{
(v0, . . . , v̂i, . . . , vk) if i < k,

(v0, . . . , vk−1, v̂k) if i ≥ k.
, (1)

where v̂i means that the vertex in the i-th position has been removed.
The resulting (k − 1)-simplex τi preserves the original order of
vertices, excluding the omitted vertex. For instance, applying the
face maps to a directed triangle returns its directed edges. Face maps
satisfy the simplicial identity di ◦ dj = dj−1 ◦ di, where ◦ is the
composition operator, for i < j, ensuring that the order in which
vertices are removed does not affect the resulting face. Face maps are
an essential tool for understanding and structuring the relationships
between directed simplices within a complex.
Topological Signals. Given a directed simplicial complex K =
(V,Σ), a topological signal over K is defined as a mapping x :
Σ → R from the set of simplices Σ to real numbers. Therefore, the
feature vectors xσ ∈ RF and xτ ∈ RF of simplices σ and τ are a
collection of F topological signals, i.e.,

xσ = [x1(σ), . . . , xF (σ)]
⊤ and xτ = [x1(τ), . . . , xF (τ)]

⊤. (2)

For example, in a directed simplicial complex of dimension two, there
are F signals (features) associated with nodes, edges, and triangles.

Fig. 2: (Left) A pair of non-isomorphic (distinguishable) digraphs,
(Middle) their corresponding two-dimensional directed flag com-
plexes, and (Right) their symmetrized undirected versions. Sym-
metrizing the directed flag complexes collapses the non-isomorphic
digraphs into isomorphic flag complexes, while the directed flag
complexes are non-isomorphic.

III. DIRECTED SIMPLICIAL NEURAL NETWORKS

In this section, we introduce Directed Simplicial Neural Networks
(Dir-SNNs), message-passing networks operating on directed simpli-
cial complexes. To do so, we first formally motivate and then intro-
duce a consistent notion of higher-order topological directionality.
Motivation. A directed simplicial complex can be transformed into
an undirected simplicial complex via symmetrization, wherein the
order of the vertices in each directed simplex is disregarded. The sym-
metrization preserves isomorphisms, meaning that two isomorphic
directed simplicial complexes will remain isomorphic as undirected
complexes after symmetrization. Informally, this means that two
indistinguishable directed simplicial complexes remain indistinguish-
able after the symmetrization. However, the process is not injective:
non-isomorphic directed simplicial complexes may be mapped to
isomorphic undirected simplicial complexes. Informally, this means
that two distinguishable directed simplicial complexes can become
indistinguishable after the symmetrization. For the same reason,
composing symmetrization with lifting into (directed) flag complexes
– whether by first symmetrizing a digraph and then lifting it into a
flag complex, or by first lifting it into a directed flag complex and
then symmetrizing it – can collapse distinct digraphs into the same
undirected simplicial complex. This is just one of the possible formal
hints showing that transitioning to higher-order undirected simplicial
complexes is not always inherently beneficial, calling for a notion of
higher-order directionality. Fig. 2 illustrates this fact.
Higher-order Topological Directionality. We define directed re-
lations among simplices in a directed simplicial complex K us-
ing face maps. Consider an ordered pair of simplices (σ, τ) with
dim(σ) = dim(τ). Let (di, dj) denote an ordered pair of the
i-th and j-th face maps, as defined in (1). We define (σ, τ) as
being down (k, i, j)-adjacent if there exists a simplex κ such that
dim(κ) = dim(σ) − k and di(σ) ⊇ κ ⊆ dj(τ). To illustrate this,
let σ = (0, 1, 2) and τ = (1, 2, 3) be 2-simplices (triangles) as in
Fig. 3. Consider the ordered pair of face maps (d0, d2). Applying
these maps, we obtain the directed edges d0((0, 1, 2)) = (1, 2) = κ
and d2((1, 2, 3)) = (1, 2) = κ, making the ordered pair of
simplices (σ, τ) down (1, 0, 2)-adjacent. Similarly, we define (σ, τ)
as being up (k, i, j)-adjacent if there exists a simplex κ such that
dim(κ) = dim(σ) + k and σ ⊆ di(κ) and τ ⊆ dj(κ). Notably,
for i ̸= j, if an ordered pair (σ, τ) is up/down (k, i, j)-adjacent,



Fig. 3: Example of (1, 0, 2)-adjacent directed 2-simplices σ =
(0, 1, 2) and τ = (1, 2, 3), sharing the edge κ = (1, 2) (in red).

Fig. 4: Examples of edge down adjacencies. σ is the red edge in each
subfigure. (a)/(b) A0,0

↓,1/A1,1
↓,1 connects σ with the edges with which

it shares a target/source node; (c)/(d) A0,1
↓,1/A1,0

↓,1 connects σ with the
edges whose source/target node is the target/source node of σ.

then (τ, σ) is up/down (k, j, i)-adjacent. Additionally, due to the
symmetry in the face maps, if (σ, τ) is up/down (k, i, i)-adjacent,
then (τ, σ) is also up/down (k, i, i)-adjacent, showing that not all
the directed adjacencies are necessarily asymmetric. It is then natural
to define notions of neighborhood among simplices of the same
dimensions using the above adjacencies.
We define the lower (k, i, j)-adjacency Aij

↓,k of a simplex σ as

Aij
↓,k(σ) =

τ ∈ Σ|
dim(σ) = dim(τ),
∃κ :dim(κ) = dim(σ)− k,
di(σ) ⊇ κ ⊆ dj(τ)

 . (3)

We define the upper (k, i, j)-adjacency Aij
↑,k of a simplex σ as

Aij
↑,k(σ) =

τ ∈ Σ|
dim(σ) = dim(τ),
∃κ :dim(κ) = dim(σ) + k,
σ ⊆ di(κ) and τ ⊆ dj(κ)

 . (4)

For the lower (k, i, j)-adjacency in (3) we assume dim(κ) = 0
if k > dim(σ), while for the upper (k, i, j)-adjacency in (4)
we assume dim(κ) = dim(K) if k > dim(K) − dim(σ). We
show some examples of edge lower and upper adjacencies in Fig.
4 and Fig. 5, respectively. The upper (k, i, j)-adjacency offers a
complementary perspective to the lower (k, i, j)-adjacency, because
the former captures the directed interactions where simplices σ and
τ are both included in some higher-order simplices, while the latter
when they both contain some lower-order simplices. Finally, face
maps can also be used to define notions of neighborhood among
simplices of different dimensions. We define the boundary B and
coboundary C of σ ∈ K as

B(σ) =
dim(σ)⋃
i=0

{di(σ)}, C(σ) =
dim(σ)+1⋃

i=0

d−1
i (σ), (5)

where d−1
i is the preimage of di. The boundary and the coboundary

of σ are then its facets and the simplices it is a facet of, respectively.
Consistency of Higher-order Topological Directionality. The way
we define the directed adjacencies among simplices is grounded in
the notion of simplicial directed paths [24]. In a digraph G = (V,E),
a directed path is defined as a sequence of vertices (v0, v1, . . . , vn)
where each consecutive pair (vi, vi+1) ∈ E forms a directed edge. In
a directed simplicial complex K, a (k, i, j)-simplicial path between
an ordered pair of simplices (σ, τ) in K is a sequence of simplices
σ = α0, α1, α2, . . . , αn, αn+1 = τ such that each consecutive pair
(αk, αk+1) is (k, i, j)-adjacent along the face maps (di, dj). We
show some examples of simplicial paths of triangles in Fig. 6. Higher-
order directionality reveals novel, discriminative structural properties,

Fig. 5: Examples of edges upper adjacencies. σ is the red edge in
each subfigure. (a) A2,0

↑,1 connects σ with the edge on its right; (a)
A2,1
↑,1 connects σ with the edge on its left.

Fig. 6: Examples of simplicial paths (in red) of 2-simplices (trian-
gles). (a) The (1, 0, 2) path, showing the simplices are equidirected;
(b) the (1, 1, 2) path, revealing a circular flow around a source node.

as demonstrated again in Fig. 2, where circular flows (in red) emerge
considering of (1, 0, 2)-simplicial paths. Finally, simplicial paths can
also traverse simplices of different orders. We decided to add the
constraint dim(σ) = dim(τ) in (3)-(4) to keep a distinction between
same-dimension and different-dimension neighbors.
Directed Simplicial Neural Networks Directed Simplicial Neural
Networks (Dir-SNNs) are message-passing networks [28] leveraging
the adjacencies from (3)-(4). Given (i) a directed simplicial complex
K, and (ii) sets {Aij

↓,k}i,j,k and {Aij
↑,k}i,j,k collecting some of the

lower and upper (k, i, j)-adjacencies as in (3)-(4), respectively, the
l-th layer of a Dir-SNN updates the feature vector xl

σ of a σ ∈ K as

ml+1

σ,↓ijk =
⊕

τ∈Aij
↓,k(σ)

ψAij
↓,k

(
xl
σ,x

l
τ ,x

l
κ

)
, (6)

ml+1

σ,↑ijk =
⊕

τ∈Aij
↑,k(σ)

ψAij
↑,k

(
xl
σ,x

l
τ ,x

l
κ

)
, (7)

ml+1
σ,B =

⊕
τ∈B(σ)

ψB
(
xl
σ,x

l
τ

)
, (8)

ml+1
σ,C =

⊕
τ∈C(σ)

ψC
(
xl
σ,x

l
τ

)
, (9)

xl+1
σ = ϕ(xl

σ, {ml+1

σ,↓ijk}ijk, {m
l+1

σ,↑ijk}ijk,m
l+1
σ,B ,m

l+1
σ,C ). (10)

with κ in (6) as in (3) and in (7) as in (4),
⊕

being a
intra-neighborhood aggregator. The neighborhood-dependent mes-
sage functions ψAij

↓,k
, ψAij

↑,k
, ψB and ψC , and the update function ϕ

are learnable functions. In other words, the feature vector of a simplex
is updated in a learnable fashion through aggregated messages with
its neighboring simplices. At the l-th layer, a simplex has collected
information from simplices that are up to l steps away from it along
the simplicial directed paths induced by the chosen adjacencies.
Remark. In (8) and (10), single message functions ψB and ψC are
used for computational efficiency. However, face map- and preimage-
dependent message functions, i.e. ψdi and ψ

d−1
i

, could leverage
more fine-grained directed information, e.g. edges communicating
with their source or target nodes using different sets of weights.
Expressiveness of Dir-SNNs. The expressive power of topological
neural networks (including GNNs) is usually measured by their
capacity to distinguish non-isomorphic objects within their underlying
domain [6]. Here, we introduce the following result:
Theorem 1. There exist Dir-SNNs that are more powerful than
Dir-GNNs [20] at distinguishing non-isomorphic digraphs using a
directed flag complex lifting.
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Fig. 7: SNR vs accuracy of directed and undirected TNNs and GNNs on directed (left) and undirected (right) synthetic flag complexes.

Fig. 8: A pair of non-isomorphic directed graphs (a) and (b), along
with their corresponding flag complexes (c) and (d). These digraphs
can be distinguished by Dir-SNNs but not by Dir-GNNs [20].

Proof. See Appendix.
An example is shown in Fig. 8. Intuitively, our proof follows the
same strategy of [5], thus it relies on the definition of a directed
simplicial isomorphism test that is proven to be (i) an upper bound
on the expressiveness of Dir-SNNs, and (ii) more powerful than the
directed graph isomorphism test [29], being an upper bound on the
expressiveness of Dir-GNNs [20].
Remark. Dir-SNNs generalize Dir-GNNs [20]. A Dir-GNN is a Dir-
SNNs operating on a digraph, i.e., a directed simplicial complex of
dimension one, which updates the node feature vectors using only
the (1, 0, 1)- and the (1, 1, 0)-upper adjacencies in (4).

IV. NUMERICAL RESULTS

We first provide some preliminary results to validate the effectiveness
of Dir-SNN on a synthetic source localization task at the edge level
[30]. Then, we perform a simple experiment to validate Theorem 1.1

A. Source Localization
Dataset. We generate directed and undirected graphs following a
Stochastic Block Model [31]. Each graph has 70 nodes uniformly
divided into 10 communities, with intra- and inter-community edge
probabilities of 0.9 and 0.01, respectively. Intra-community edges
are grouped into 10 edge communities, and the remaining inter-
community edges form an 11th partition. We generate 1000 edge sig-
nals from a zero-mean Gaussian distribution with variance 1/Nedges,
and then, for each signal, we introduce spikes to randomly se-
lected source edges belonging to a single community with intensity
α ∼ N (0, 1). In the directed case, the graphs are lifted in their
corresponding directed flag complexes, and the spikes are diffused
over the graph following x′ = Stx+ n, where S ∈ RNedges×Nedges is a
non-symmetric binary matrix encoding A0,1

↓,1 from (3) for each edge,
t is the order of diffusion sampled from a Student-T distribution with
10 degrees of freedom and capped at 100, x is the original signal with
the added spikes and n is additive white Gaussian noise inducing a
specific SNR. In the undirected case, the graphs are lifted in their
corresponding flag complexes, and S is the symmetric lower edge
adjacency, analogously to [30]. The task is to identify the community
originating the spikes, thus a classification problem with 11 classes.
Experimental setup. Since the designed task considers only edge
signals, we decided to employ a specific instance of Dir-SNN that

1Code at https://github.com/andrea-cavallo-98/DirSNN

Model Accuracy
Dir-GNN 50%
Dir-SNN 100%

TABLE I: Discrimination accuracies of Dir-GNN and Dir-SNN.

operates on the four directed adjacency relations described by A0,0
↓,1,

A0,1
↓,1, A1,0

↓,1, A1,1
↓,1, without considering boundary and coboundary.

The aggregators, update, and message functions are chosen to have
a convolutional architecture [32]. Therefore, we compare with an
undirected convolutional SNN using the undirected lower adjacency
of the edges [11], and with two GNNs that operate on the projection
of edge features on their endpoint nodes, one directed (Dir-GNN [20])
and the other undirected (GCN [32]). We perform a grid search for
all the models among the following values: {1, 2, 3} layers of size
{16, 32, 64}. The embeddings are max-pooled and fed into an MLP
to perform classification. We average over 5 seeds.
Discussion. In Fig. 7, Dir-SNN consistently and largely outperforms
all the baselines for all levels of SNR on directed flag complexes
(Left). Moreover, Dir-SNN performs comparably to SNN on flag
complexes (Right), showing their robustness to model mismatching.
B. Expressivity Validation
Dataset. We employ a toy dataset containing only the two graphs in
Fig. 8 (a)-(b), and we assign them two different classes. The task is
then to correctly classify them.
Experimental Setup. We compare Dir-SNN and Dir-GNN. The
parameters are the same of IV-A, but for Dir-SNN we also use A2,0

↑,1
(to leverage the directed triangles). The two graphs in Fig. 8 (a)-(b)
are fed to the Dir-GNN with constant features on each node, while
the two corresponding directed flag complexes in Fig. 8 (c)-(d) are
fed to the Dir-SNN with constant features on each simplex.
Discussion. The results in Table I numerically validate the improved
expressivity of Dir-SNN stated in Theorem 1. Indeed, Dir-GNN
cannot discriminate the two graphs, while Dir-SNN can discriminate
them thanks to the lifting into directed flag complexes.

V. CONCLUSIONS

We introduced Directed Simplicial Networks (Dir-SNNs), the first
family of message-passing networks operating on directed simplicial
complexes and leveraging novel notions of higher-order topological
directionality. Dir-SNNs effectively model complex directed and
possibly asymmetric relationships that are inaccessible to traditional
directed graph-based or undirected topological models, showing
improved expressivity. Numerical experiments validated the effec-
tiveness and the expressivity of Dir-SNNs. In the journal version of
this paper, we will characterize the expressivity of Dir-SNNs more
comprehensively. Moreover, we will develop a spectral theory to
characterize better the (implicit, at the moment) filtering operations
in Dir-SNNs. Finally, we will exhaustively evaluate Dir-SNNs on a
wide range of real data, both on graph and higher-order tasks.
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APPENDIX

The expressive power of Topological Neural Networks (TNNs) is
usually (but not only [33]) measured by evaluating their ability to
distinguish isomorphic combinatorial topological spaces (CTS) [5].
The Weisfeiler-Leman (WL) test, an isomorphism test for graphs [34],
has been proven to be an upper bound on GNNs discriminative power
[6], i.e. no vanilla GNN can distinguish isomorphic graphs better than
the WL. Graph liftings, such as the directed flag complex lifting
(introduced in Sec. II), canonically map graphs to Combinatorial
Topological Spaces (CTS), enriching their structure with higher-order
relations while preserving the original graph’s nodes (0-simplices)
and edges (1-simplices). These liftings ensure that isomorphic graphs
are mapped to isomorphic CTSs and non-isomorphic graphs to non-
isomorphic CTSs. For this reason, topological variants of the WL test
have been developed to exploit the additional higher-order structure
introduced by graph lifting [5], [26], [35]. These extensions, as
their graph counterpart, have been proven to be an upper bound on
TNNs ability to distinguish isomorphic CTS, and, more importantly,
they have been used to prove that TNNs operating on lifted graphs
are more expressive than traditional GNNs. In other words, TNNs
have demonstrated a greater capacity to distinguish between non-
isomorphic graphs that GNNs may otherwise classify as identical.
In this appendix, we prove Theorem 1, i.e. we formally show
that Directed Simplicial Neural Networks (Dir-SNNs) leveraging
higher-order structures and directional information through directed
flag complex liftings are strictly more expressive than Directed
Graph Neural Networks (Dir-GNNs) [20]. Our proof is a non-trivial
adaptation of the Simplicial Weisfeiler-Leman (SWL) test from [5]
to the directed setting (defined in Sec. III). In particular, we first
introduce the Directed Simplicial Weisfeiler-Leman (D-SWL) test,
the first isomorphism test for directed simplicial complexes. We then
rigorously show that D-SWL is a more powerful isomorphism test
than D-WL [29], being an upper bound on the expressiveness of Dir-
GNNs. Finally, the proof is concluded by showing that the D-SWL
is an upper bound on the expressiveness of Dir-SNNs. The structure
of our proofs, theorems, and notation follows closely the work of



[5], and we encourage readers to consult it for further context and
foundational concepts.
Directed Simplicial Weisfeiler-Leman (D-SWL) Test. We assume
k = 1 and omit this specification from the notation of the up- and
down-adjacencies in (4)-(3). Let K be a directed simplicial complex,
and let ct denote the colouring of simplices at iteration t in the D-
SWL test. Let σ ∈ K be an n-simplex, we define the following
arguments at step t:
1. Boundary colouring: Represents the ordered tuple of colours
assigned to each element of the boundary of σ, di(σ).

ctB(σ) = (cd0(σ), . . . , cdn(σ)).

2. Coboundary colouring: Let c
d−1
i (σ)

= {{cτ | τ ∈ d−1
i (σ)}} be

the multiset of colours for the preimage of the i-th face map of σ.
Then the coboundary colouring of σ is given by:

ctC(σ) =

dim(σ)+1⋃
i=0

c
d−1
i (σ).

3. Down adjacency colouring: Captures the pairs of colours asso-
ciated with simplices τ that are downward adjacent to σ, where κ
represents a shared face.

(cij↓ )
t(σ) = {{(ctτ , cκ) | τ ∈ Aij

↓ (σ), di(σ) = κ = dj(τ)}}.

4. Up adjacency colouring: Represents the pairs of colours of
simplices τ that are upward adjacent to σ, where κ represents a
shared higher-dimensional face.

(cij↑ )
t(σ) = {{(ctτ , cκ) | τ ∈ Aij

↑ (σ), di(κ) = σ, dj(κ) = τ}}.

The D-SWL test distinguishes non-isomorphic directed simplicial
complexes through iterative color refinement of simplices. The pro-
cedure consists of the following steps:
1) Initialization: At t = 0, assign an initial colouring to all simplices.
2) Color Propagation and Refinement: For each simplex σ, propagate
and refine the colours using the injective update rule:

ct+1
σ = HASH

(
ctσ, c

t
B(σ), c

t
C(σ), ((c

ij
↓ )

t(σ))ij , ((c↑i,j)t(σ))ij
)
,

where i, j ∈ {0, . . . , dim(σ)} and i, j ∈ {0, . . . , dim(σ)} for the
down and upper adjacencies, respectively.
3) Termination: Repeat this process until the colouring stabilizes.
Two directed simplicial complexes are considered non-isomorphic if
their stable color histograms differ.
We now demonstrate that, for distinguishing non-isomorphic directed
simplicial complexes, the multisets of colours associated with the
coboundaries and down-adjacencies can be removed without sacrific-
ing the expressiveness of the D-SWL test. This will simplify the rest
of the proof, and it also demonstrates that D-SWL (and, eventually,
Dir-SNNs) can be made computationally more efficient.

Lemma 1. D-SWL with HASH
(
ctσ, c

t
B(σ), ((c

ij
↑ )

t(σ))i,j
)

is as

powerful as D-SWL with the generalised update rule ct+1
σ =

HASH
(
ctσ, c

t
B(σ), c

t
C(σ), ((c

ij
↓ )

t(σ))i,j , ((c
i,j
↑ )t(σ))ij

)
.

Proof. First, we show that coboundary multisets can be removed,
following Lemma 25 of [5].

A. Omitting ctC(σ)

Let at and bt denote the colourings at iteration t for the generalized
update rule (which includes the coboundary color multisets) and
the restricted update rule (which excludes them), respectively. To
establish that these two colourings are equivalent, we need to show

that at refines bt and vice versa. Since the refinement at to bt is
straightforward, we focus on proving that bt refines at. We proceed
by induction on t.
1) Base Case: At t = 0, all simplices are assigned the same initial
color, so the base case holds trivially.
2) Inductive Hypothesis: Assume that for some iteration t, the
restricted colouring bt refines the generalized colouring at. That
is, if btσ = btτ for two simplices σ ∈ K1 and τ ∈ K2 with
dim(σ) = dim(τ), then atσ = atτ . We aim to show that this holds
for the next iteration, t+ 1, i.e., bt+1

σ = bt+1
τ implies at+1

σ = at+1
τ .

3) Inductive Step: Suppose that bt+1
σ = bt+1

τ . This implies equiva-
lence in the arguments of the update rule at time t. In particular, the
upward adjacency colouring multisets (bij↑ )

t(σ) include the colours
of all higher-dimensional simplices δσ whose i-th face is σ. This
accounts for the colours of the elements in the preimage of the i-th
face map d−1

i (σ). Thus, we have:

b
d−1
i (σ)

= b
d−1
i (τ)

for all i. Therefore, by definition, btC(σ) = btC(τ). Finally, by the
inductive hypothesis, the arguments for the generalized hash update
rule must also be equivalent at time t, so atσ = atτ , leading to
at+1
σ = at+1

τ , as required, completing the proof.

Second, we prove that the update rule can be further refined by
omitting the downward adjacencies.

B. Omitting ((cij↓ )
t(σ))ij

Let at and bt denote the colourings at iteration t for the generalized
update rule (which includes down-adjacencies but excludes cobound-
ary color multisets) and the restricted update rule (which excludes
both down-adjacencies and coboundary color multisets), respectively.
Our goal is to show that b2t refines at by induction.
1) Base Case: At t = 0, all simplices are assigned the same initial
color, so the base case trivially holds.
2) Inductive Hypothesis: Assume that for some iteration t, the
restricted colouring b2t refines the generalized colouring at. This
means that if b2tσ = b2tτ for two simplices σ ∈ K1 and τ ∈ K2 with
dim(σ) = dim(τ), then atσ = atτ . We aim to show that this holds
for the next iteration, t+ 2.
3) Inductive Step: Suppose that b2t+2

σ = b2t+2
τ . This implies that

b2tσ = b2tτ , meaning the arguments for the restricted update rule at step
2t are equivalent. We now need to prove that (bij↓ )

2t(σ) = (bij↓ )
2t(τ)

holds for all ordered pairs (i, j). Assume, by contradiction, that there
exists a pair of indices (i, j) such that (bij↓ (σ))

2t ̸= (bij↓ (τ))
2t.

Without loss of generality, suppose there is a pair of colours (c0, c1)
that appears more frequently in (bij↓ (σ))

2t than in (bij↓ (τ))
2t. For

simplicity, as in [5], assume b2tσ ̸= c0 ̸= b2tτ . Define cjδ = b
d−1
j (δ)

(c0)

to denote the multiplicity of c0 in the set b
d−1
j (δ)

, i.e., the number of

elements in d−1
j (δ) coloured with c0. Now, assume there exist two

simplices δ1 and δ2, such that cjδ1 ̸= cjδ2 (without loss of generality,
assume cjδ1 > cjδ2 ). Thus, for all s ∈ {0, . . . , dim(δ1) + 1}, c0
appears more frequently in (bjs↑ )

2t(δ1) than in (bjs↑ )
2t(δ2). This

implies that b2t+1
δ1

̸= b2t+1
δ2

. Since by assumption, the number of
tuples (c0, c1) is greater in (bij↓ (σ))

2t than in (bij↓ (τ))
2t, we can

substitute δ1 = di(σ), and δ2 = di(τ). This yields cjdi(σ) =

b
d−1
j (di(σ))

(c0) ̸= cjdi(τ) = b
d−1
j (di(τ))

(c0). Therefore, we conclude:

b2t+1
di(σ) ̸= b2t+1

di(τ)
,



which implies that the boundary colouring tuples b2t+1
B (σ) ̸=

b2t+1
B (τ). Hence, b2t+2

σ ̸= b2t+2
τ , leading to a contradiction. There-

fore, (bij↓ )
2t(σ) = (bij↓ )

2t(τ) for all ordered pairs (i, j). Finally, by
the inductive hypothesis, b2t refines at, completing the proof. ■

D-SWL vs D-WL. We now prove the following result.

Lemma 2. D-SWL with a directed flag complex lifting is strictly
more powerful than D-WL.

Proof. We begin by proving that D-SWL is at least as expressive
as D-WL in distinguishing non-isomorphic directed simplicial com-
plexes. The proof follows closely the structure of Lemma 27 in [5],
with key differences in the treatment of upper adjacencies: D-SWL
and D-WL employ distinct colouring multisets to capture asymmetric
directional dependencies.

A. At Least As Expressive

Let K be a directed simplicial complex. Denote by at and bt the
colourings of the same vertices in K at iteration t of D-WL and D-
SWL, respectively. We aim to show that the D-SWL colouring bt

refines the D-WL colouring at.
1) Base Case: At t = 0, all simplices are assigned the same initial
color, so the base case trivially holds.
2) Inductive Step: Suppose that for some iteration t, bt+1

v = bt+1
w for

two vertices v and w in two arbitrary directed simplicial complexes
K1 and K2, meaning that the D-SWL colourings of v and w at step
t + 1 are identical. Since vertices have no boundary simplices and
are only upper adjacent, this implies:

btv = btw, (b01↑ )t(v) = (b01↑ )t(w), (b10↑ )t(v) = (b10↑ )t(w).

Expanding the definition of these multisets, we get:

{{btz | (btz, ·) ∈ (b01↑ )t(v)}} = {{btu | (btu, ·) ∈ (b01↑ )t(w)}},

{{btz | (btz, ·) ∈ (b10↑ )t(v)}} = {{btu | (btu, ·) ∈ (b10↑ )t(w)}}.

These are equivalent to the upper in- and out-neighborhood sets of the
vertices v and w, defined in [20] as N←(v) and N→(v), respectively.
Thus, we can rewrite the expressions as:

{{btz | z ∈ N←(v)}} = {{btu | u ∈ N←(w)}},

{{btz | z ∈ N→(v)}} = {{btu | u ∈ N→(w)}}.

By the induction hypothesis, we know that atv = atw, (a01↑ )t(v) =
(a01↑ )t(w), and (a10↑ )t(v) = (a10↑ )t(w). These are the arguments that
the D-WL hash function uses to compute the colours of v and w at
the next iteration, which implies that at+1

v = at+1
w . Hence, bt refines

at, proving that D-SWL is at least as expressive as D-WL.

B. Strictly More Expressive

To demonstrate that D-SWL is strictly more powerful than D-WL,
we present a counterexample: a pair of digraphs that cannot be
distinguished by D-WL but whose directed flag complexes can be
distinguished by D-SWL. In Fig. 8, we show such a pair of digraphs.
While the D-WL test produces identical colourings for both digraphs,
their directed flag complexes reveal a crucial difference: one complex
contains directed triangles, while the other contains none. Since D-
SWL detects these higher-order simplicial structures, it successfully
distinguishes the two digraphs, completing the proof. ■

Dir-SNNs vs Dir-GNNs. We can finally prove Thm. 1 from Sec. III.

Theorem 1. There exist Dir-SNNs that are more powerful than Dir-
GNNs [20] at distinguishing non-isomorphic digraphs when using a
directed flag complex lifting.

Proof. First, we demonstrate that Dir-SNNs with sufficient layers and
injective neighborhood aggregators are as powerful as the D-SWL test
in distinguishing non-isomorphic directed simplicial complexes. The
proof parallels the structure of Lemma 9 in [5].

A. Dir-SNNs As Powerful As D-SWL

Let ct and ht represent the colouring at iteration t of D-SWL and the
t-th layer of a Dir-SNN, respectively. We consider a Dir-SNN with
L layers, and for t > L, we assume that ht = hL. First, we show
by induction that the colouring ct of D-SWL refines the colouring
ht of Dir-SNN.
1) Base Case: At t = 0, all simplices are assigned the same initial
color in both D-SWL and Dir-SNN, so the base case trivially holds.
2) Inductive Step: For the inductive step, suppose that for some
iteration t, the colouring ct+1

σ = ct+1
τ for two simplices σ and τ

in a directed simplicial complex. Because the D-SWL colouring is
injective, the arguments to the HASH function must also be equal.
This implies the following equalities:

ctσ = ctτ , ctB(σ) = ctB(τ), ctC(σ) = ctC(τ),

((cij↓ )
t(σ))i,j = ((cij↓ )

t(τ))i,j , and ((cij↑ )
t(σ))i,j = ((cij↑ )

t(τ))i,j .

By the induction hypothesis, these arguments will also be equal under
the Dir-SNN colouring ht. Since the same arguments are supplied
as input to the message-passing, aggregate, and update functions of
Dir-SNN, their outputs will be identical for σ and τ . Therefore,
ht+1(σ) = ht+1(τ). Following the discussion in Theorem 9 of [5],
and assuming that the boundary aggregation function is injective and
non-permutation invariant, we can derive the reverse implication:
ht refines the colouring of ct, proving that Dir-SNNs with sufficient
layers and injective neighborhood aggregators are at least as powerful
as D-SWL.

B. Strictly More Expressive

Finally, applying Lemma 2, we conclude that Dir-SNNs, when
utilizing a directed flag complex lifting, are strictly more powerful
than Dir-GNNs, as D-SWL is more expressive than D-WL in distin-
guishing non-isomorphic digraphs. ■


